

Course Title: Radiation Medical Physics

Course Code: MPHY6456

Program: Medical Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 1

Last Revision Date: 5 September 2023

Table of Contents

A. General information about the course:	
1. Course Identification	خطأ! الإشارة المرجعية غير معرّفة
۲. Teaching mode (mark all that apply)	خطأ! الإشارة المرجعية غير معرّفة
${}^{ m v}$. Contact Hours (based on the academic semester)	خطأ! الإشارة المرجعية غير معرّفة
B. Course Learning Outcomes (CLOs), Teaching Strategies an الإشارة المرجعية غير معرَفة.	نطأ! Assessment Methods
C. Course Content	خطأ! الإشارة المرجعية غير معرّفة
D. Students Assessment Activities	خطأ! الإشارة المرجعية غير معرّفة
E. Learning Resources and Facilities	خطأ! الإشارة المرجعية غير معرّفة
1. References and Learning Resources	خطأ! الإشارة المرجعية غير معرّفة
2. Required Facilities and equipment	خطأ! الإشارة المرجعية غير معرّفة
F. Assessment of Course Quality	خطا! الإشارة المرجعية غير معرّفة
G. Specification Approval Data	خطأ! الإشارة المرجعية غير معرّفة

A. General information about the course:

1. Course Identification

1. Credit hours: 3

2. Course type

Z . V	Jourse type							
Α.	University	College 🗆	Departmer	nt⊠	Track□	Others		
Β.	Required	Elective						
3.	Level/year at w	hich this course	e is offered:	7 th Le	vel / 4 th year			
4. (Course general	Description						
adv Par Pho Atte calo	s course aims to pr ances in medical u ticles Accelerators otoelectric, Compto enuation & absorp culations, General	use of ionizing rad in Medicine, Inte on effects & pair p tion coefficients. I aspect of Interacti	iation to impro eraction of Ioniz production Proc Exponential law ons of Charged	ve in ef zing rad esses & v, Half v	ficient x-ray be liation with mat their clinical in alue layer & si	eam delivery, tter. mportance. mple		
5.	5. Pre-requirements for this course (if any):							
MP	HY26352							

6. Co- requirements for this course (if any):

NA

7. Course Main Objective(s)

Recognize properties of X-ray, particles produced by accelerator used in medicine and their interaction with the matter.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

3.Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	40

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Recognize the different radiation used in medicine and their interaction with matter		Lecturing	Quizzes Homework Midterm exam Final exam
2.0		Skills		
2.1	Solveproblemsrelated to radiationin medical physics	S1	Solve problems. Self-learning	Quizzes Homework Midterm exam

Code	Course Learning Outcomes	<u> </u>		Assessment Methods
				Final exam
2.2	Illustrate the different interaction with matter in particular for human tissues	interaction with S1 matter in particular		Quizzes Homework Midterm exam Final exam
2.3	Communicate positively with others.	S4	Presentation Work group	Reports Presentation
3.0		Values, autonomy, and	responsibility	
3.1	Exhibit self-learning skills independently.	V2	Self-learning	Reports Presentation
3.2	Ability to work in team effectively.	V3	Work group	Reports Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Production of X-Rays X-Ray Line Spectra Emission of Radiation by Accelerated Charged Particle Synchrotron Radiation Čerenkov Radiation	4
2.	Particle Accelerators in MedicineBasic Characteristics of Particle AcceleratorsPractical Use of X-RaysPractical Considerations in Production of X-Rays	5
3.	Particle Accelerators in Medicine Traditional Sources of X-Rays: X-Ray Tubes Circular Accelerators Clinical Linear Accelerator	4
4.	Interactions of Photons with Matter General Aspects of Photon Interactions with Absorbers Thomson Scattering Incoherent Scattering (Compton Effect)	5
5.	Interactions of Photons with Matter	5

	Rayleigh Scatt	tering							
	Photoelectric Effect								
	Pair Production								
	Photonuclear l	Reactions							
	Energy Interactions v	Transfer with Matter	and	Energy	Absorption	in	Photon		
6.	Macroscopic A	Attenuation Co	oefficien					4	
0.	Energy Transf	er from Photo	ns to Char	ged Particles i	n Absorber			7	
	Energy Absorp	ption							
	Energy Interactions v	Transfer with Matter	and	Energy	Absorption	in	Photon		
	Coefficients o	f Compounds	and Mixtu	ires					
7.	Effects Follow	ving Photon In	teractions	with Absorber	r			5	
	Summary of P								
	Sample Calcul	lations							
	Interactions of	of Charged Pa	articles wi	th Matter					
	General Aspects of Energy Transfer from Charged Particle to Medium								
	General Aspec								
8.	Radiation (Nuclear) Stopping Power							5	
	Collision (Electronic) Stopping Power for Heavy Charged Particles								
	Collision Stopping Power for Light Charged Particles								
	Interactions of	of Charged Pa	articles wi	th Matter					
	Total Mass Ste	opping Power							
	Range of Charged Particles								
9.	Mean Collisio	5							
	Restricted Collision Stopping Power								
	Bremsstrahlun	g Targets							
	Interactions	of Neutron	s with M	atter					
10	General Aspects of Neutron Interactions with Absorbers						F		
10.	Neutron Interactions with Nuclei of the Absorber						5		
	Neutron Beam	ns in Medicine							
				Total				50	

Table: The matrix of consistency between the content and the learning outcomes of the course.

	Course Learning Outcomes							
	1.1	2.1	2.2	2.3	3.1	3.2		
Topic 1	٧	V	V		V	V		
Topic 2	V	V	V		V	V		
Topic 3	V	v	V		٧	V		
Topic 4	٧	v	٧	V	٧	V		
Topic 5	v	V	V	V	٧	V		
Topic 6	V	v	V	V	٧	V		
Topic 7	٧	v	٧	V	٧	V		
Topic 8	V	v	V	V	٧	V		
Topic 9	٧	v	٧	V	٧	V		
Topic 10	٧	٧	٧	٧	٧	٧		

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

	- Radiation Physics for Medical Physicists, Third Edition,
	Ervin B. Podgoršak, Faculty of Medicine, Department of
	Oncology and Medical Physics Unit McGill University
Essential References	Montreal, Springer International Publishing Switzerland
	2016.
	- An Introduction to Medical Physics, Maqbool, Muhammad, Springer,
	2017

	INTRODUCTION TO RADIOLOGICALPHYSICS
Supportive References	AND RADIATION DOSIMETRY, FRANK HERBERT
	ATTIX, WILEY-VCHVerlag GmbH & Co. KGaA, 2004.
	- Blackboard.
Electronic Materials	- PowerPoint presentations.
	- Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (projector, smart board, software)	Projector or smart board
Other equipment (depending on the nature of the specialty)	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students.	Indirect (Questionnaire).
Effectiveness of students assessment	Students, Staff members, Program Leader.	Indirect (Questionnaire).
	Peer Reviewer.	Direct (Review exam)
Quality of learning resources	Students, Staff members, Program Leaders.	Indirect (Questionnaire).
The extent to which CLOs have been achieved	Students, Staff members, Program Leader.	Indirect (Questionnaire).
	Course coordinator.	Direct (Course Learning Outcomes Assessment).

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	١

DATE

5 September 2023

